Microfluidic characterization and continuous separation of cells and particles using conducting poly(dimethyl siloxane) electrode induced alternating current-dielectrophoresis.
نویسندگان
چکیده
This paper presents a poly(dimethyl siloxane) (PDMS) polymer microfluidic device using alternating current (ac) dielectrophoresis (DEP) for separating live cells from interfering particles of similar sizes by their polarizabilities under continuous flow and for characterizing DEP behaviors of cells in stagnant flow. The ac-DEP force is generated by three-dimensional (3D) conducting PDMS composite electrodes fabricated on a sidewall of the device main channel. Such 3D PDMS composite electrodes are made by dispersing microsized silver (Ag) fillers into PDMS gel. The sidewall AgPDMS electrodes can generate a 3D electric field that uniformly distributes throughout the channel height and varies along the channel lateral direction, thereby producing stronger lateral DEP effects over the entire channel. This allows not only easy observation of cell/particle lateral motion but also using the lateral DEP force for manipulation of cells/particles. The former feature is used to characterize the frequency-dependent DEP behaviors of Saccharomyces cerevisiae (yeast) and Escherichia coli (bacteria). The latter is utilized for continuous separation of live yeast and bacterial cells from similar-size latex particles as well as live yeast cells from dead yeast cells. The separation efficiency of 97% is achieved in all cases. The demonstration of these functions shows promising applications of the microfluidic device.
منابع مشابه
Discrimination methodology of living-cells and microbeads using dielectrophoresis and fluid-induced shear force
Cell sorting is an important technology that is widely used for medical diagnosis in hospitals and cell engineering research. Among cell sorting technology, dielectrophoresis (DEP) is one of the most promising approaches for manipulating and separating biological particles because this phenomena requires no labeling procedure with a fluorescent dye or magnetic beads. In this study, we developed...
متن کاملContinuous separation of colloidal particles using dielectrophoresis.
Dielectrophoresis is the movement of particles in nonuniform electric fields and has been of interest for application to manipulation and separation at and below the microscale. This technique has the advantages of being noninvasive, nondestructive, and noncontact, with the movement of particle achieved by means of electric fields generated by miniaturized electrodes and microfluidic systems. A...
متن کاملHighly improved methanol oxidation onto carbon paste electrode modified by nickel particles dispersed into poly (2,5-dimethylaniline) film
In this work, modification of carbon paste electrode surface with poly (2, 5-Dimethyl aniline) (P-2,5-DMA) by using electrochemical polymerization was described. Then, transition metal ions of Ni(II) were incorporated into the polymer film by two ways. At first way, the polymeric modified electrode was immersed in 0.2 M NiSO4 solutions and the second way was carried out by electrodeposition of ...
متن کاملContinuous sorting of microparticles using dielectrophoresis.
Sorting of particles such as cells is a critical process for many biomedical applications, and it is challenging to integrate it into an analytical microdevice. We report an effective and flexible dielectrophoresis (DEP)-based microfluidic device for continuous sorting of multiple particles in a microchannel. The particle sorter is composed of two components-a DEP focusing unit and a Movable DE...
متن کاملDielectrophoresis (DEP) of Cells and Microparticle in PDMS Microfluidic Channels
Electromanipulation of microparticles utilizing microelectrodes has demonstrated considerable promise for the characterization, separation and handling of biological cells. Presently considerable research and development effort is directed towards the development of miniaturized fluidic systems with integrated dielectrophoresis (DEP) electrodes. The design, development and fabrication of a DEP ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 83 24 شماره
صفحات -
تاریخ انتشار 2011